Документ подписан простой электронной подписью Информация о владельце:

ФИО: Коротков Сергей Леонидович

Должность: Директор филиала СамГУПС в г. Ижевске

Дата подписания: 10.06.2024 16:51:54 Уникальный программный ключ:

d3cff7ec2252b3b19e5caaa8cefa396a11af1dc5

Приложение к ППССЗ по специальности 09.02.07 Информационные системы и программирование

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ ОП. 10 ЧИСЛЕННЫЕ МЕТОДЫ

для специальности

09.02.07 Информационные системы и программирование

Базовый уровень подготовки

Год начала подготовки - 2024

СОДЕРЖАНИЕ

1	ПАСПОРТ ФОС ПО УЧЕБНОЙ ДИСЦИПЛИНЕ 4	
2	СТРУКТУРА И ПЕРЕЧЕНЬ КОНТРОЛЬНО-ОЦЕНОЧНЫХ МАТЕРИАЛОВ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ	7
3	ПЕРЕЧЕНЬ МАТЕРИАЛОВ, ОБОРУДОВАНИЯ И ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ	24

1 ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ **1.1. Общие положения**

Фонд оценочных средств (ФОС) предназначен для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины ОП.10 «Численные методы». Учебным планом предусмотрена промежуточная аттестация в форме дифференцированного зачета

ФОС разработан на основании программы подготовки специалиста среднего звена по специальности 09.02.07 Информационные системы и программирование.

1.2 Результаты освоения дисциплины, подлежащие проверке В ходе аттестации по дисциплине осуществляется проверка следующих умений, знаний и формирования общих и профессиональных компетенций.

Результаты обучения Основные показато				
(умения, знания)	оценки результатов			
У.1 Использовать основные численные методы решения математических задач.	Устный опрос, тестирование, решение задач			
У.2 Выбирать оптимальный численный метод для решения поставленной задачи.	Устный опрос, тестирование, решение задач			
У.3 Давать математические характеристики точности исходной информации и оценивать точность полученного численного решения.	Устный опрос, тестирование, решение задач			
У.4 Разрабатывать алгоритмы и программы для решения вычислительных задач, учитывая необходимую точность получаемого результата.	Устный опрос, тестирование, решение задач			
3.1 Методы хранения чисел в памяти электронновычислительной машины (далее – ЭВМ) и действия над ними, оценку точности вычислений.	Устный опрос, тестирование, выполнение индивидуальных заданий различной сложности.			
3.2 Методы решения основных математических задач – интегрирования, дифференцирования,	Оценка ответов в ходе эвристической беседы, тестирова-			

рение шения линейных и трансцендентных уравнений и систем уравнений с помощью ЭВМ.

- Кол Наименование компетенций
- OК 1. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам;
- OК 2. Использовать современные средства поиска, анализа и интерпретации информации и информационные технологии для выполнения задач профессиональной деятельности;
- ОК 3 Планировать и реализовывать собственное профессиональное и личностное развитие, предпринимательскую деятельность в профессиональной сфере, использовать знания по финансовой грамотности в различных жизненных ситуациях;
- ОК 4. Эффективно взаимодействовать и работать в коллективе и команде;
- OК 5. Осуществлять устную и письменную коммуникацию на государственном языке Российской Федерации с учетом особенностей социального и культурного контекста;
- ОК 9. Пользоваться профессиональной документацией на государственном и иностранном языках.»;
- ПК 4.1. Осуществлять инсталляцию, настройку и обслуживание программного обеспечения
- ПК 4.2. Осуществлять измерения эксплуатационных характеристик программного обеспечения компьютерных систем.

1.3 Критерии оценки знаний и умений

Билет на дифференцированный зачет или на экзамен состоит из пяти вопросов.

Оценка «отлично» ставится при полном ответе на билет. Возможны одна – две неточности при освещении второстепенных вопросов или в выкладках, которые студент легко исправил по замечанию преподавателя.

Оценка «хорошо» ставится, если студент ответил на весь билет с небольшими ошибками или недочётами, легко исправленные по замечанию преподавателя.

Оценка «удовлетворительно» ставится, если неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса, допущены

ошибки в определении понятий; студент не справился с применением теории в новой ситуации при выполнении практического задания.

Оценка «не удовлетворительно» ставится, если не раскрыто основное содержание учебного материала; допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов преподавателя.

Шкала оценки образовательных достижений

Процент результативности (правильных	Оценка уровня подготовки	
ответов)	балл (отметка)	вербальный аналог
90 ÷ 100	5	отлично
80 ÷ 89	4	хорошо
70 ÷ 79	3	удовлетворительно
менее 70	2	неудовлетворительно

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

Вопросы с открытыми ответами

ТЕСТ (с правильными ответами)

№ пп	Содержание вопроса	Правильный ответ	Проверяемые
			компетенции
1.	Приближенным числом а называют число,	a	ОК 01, 02, 03, 04,
	незначительно отличающиеся от а) точного А		05, 09,
	b) неточного A		ПК 4.1,
	с) среднего А		ПК 4.2
	d) точного не известного		
	е) приблизительного А		
2.	а называется приближенным значением А по	a	ОК 01, 02, 03, 04,
	недостатку, если		05, 09,

	a) a		ПК 4.1,
Номер задани я	Содержание вопроса	Правильный ответ	Компетенция
1	Множество - это	Совокупность объектов, обладающих определёнными свойствами	OK 01, 02, 03, 04, 05, 09, ПК 4.1, ПК 4.2
2	Подмножество - это	Часть множества, которая сама является подмножеством	OK 01, 02, 03, 04, 05, 09, ПК 4.1, ПК 4.2
3	Этот метод является наиболее распространённым приемом решения систем линейных уравнений, алгоритм последовательного исключения неизвестных	Квадратичной формой	OK 01, 02, 03, 04, 05, 09, ПК 4.1, ПК 4.2
4	Целый однородный полином второй степени от п переменных называется	$X_1 = X_2 = = X_n = 0$	OK 01, 02, 03, 04, 05, 09, ПК 4.1, ПК 4.2
5	Простейшая форма этого метода заключается в том, что на каждом шаге обращают в нуль максимальную по модулю невязку путем изменения значения соответствующей компоненты приближения	Методы ослабления	OK 01, 02, 03, 04, 05, 09, ПК 4.1, ПК 4.2
6	Произведением вектора $x=(x_1,x_2,,x_n)$ на число k называется вектор	$kx=(kx_1,kx_2,,kx_n)$	OK 01, 02, 03, 04, 05, 09, ПК 4.1, ПК 4.2
7	Для векторов х и у естественно определяется линейная комбинация	ax+by	OK 01, 02, 03, 04, 05, 09, ПК 4.1, ПК 4.2
8	Максимальное число линейно независимых векторов п-мерного пространства En в точности ровна	Размерности этого пространства	OK 01, 02, 03, 04, 05, 09, ПК 4.1, ПК 4.2
9	Название любой совокупности п линейно независимых векторов п-мерного пространства	базис	OK 01, 02, 03, 04, 05, 09, ПК 4.1, ПК 4.2

10	Как иначе называют метод бисекций?	Метод половинного деления	OK 01, 02, 03, 04, 05, 09,
			ПК 4.1,
			ПК 4.2
11	Методы решения уравнений делятся на:	Прямые и	OK 01, 02, 03, 04, 05,
		итеративные	09,
			ПК 4.1,
10			ПК 4.2
12	Определение корней можно выполнить двумя способами	Аналитический и графический	OK 01, 02, 03, 04, 05, 09,
			ПК 4.1,
			ПК 4.2
13	При контроле решения алгебраического уровня может быть полезна	Теорема Виета	OK 01, 02, 03, 04, 05, 09,
			ПК 4.1,
			ПК 4.2
14	Последовательность, удовлетворяющая условия Коши, называется	Фундаментальной последовательность	OK 01, 02, 03, 04, 05, 09,
		Ю	ПК 4.1,
			ПК 4.2
15	Как иначе называют метод Ньютона?	Метод касательных	OK 01, 02, 03, 04, 05, 09,
			ПК 4.1,
			ПК 4.2
16	как иначе называют метод хорд?	Метод пропорциональных	OK 01, 02, 03, 04, 05, 09,
		частей	ПК 4.1,
			ПК 4.2
17	Что общего у метода хорд и метода итерации?	Общая скорость и свойства	OK 01, 02, 03, 04, 05, 09,
		самоисправляемост и	ПК 4.1,
			ПК 4.2
18	Если сила постоянна, ответ дается формулой	A=F(b-	OK 01, 02, 03, 04, 05, 09,
			ПК 4.1,
			ПК 4.2
19	Все методы вычисления интегралов делятся на:	Точные и приближенные	OK 01, 02, 03, 04, 05, 09,
			ПК 4.1,

			ПК 4.2
20	Точный метод вычисления интегралов был предложен?	Ньютоном и Лейбницем	OK 01, 02, 03, 04, 05, 09, ПК 4.1, ПК 4.2
	b) a > A		ПК 4.2
	c) a = A		
	d) $a \ge A$		
	e) a ≤ A		
3.	а называется приближенным значением числа А по избытку, если	a	OK 01, 02, 03, 04, 05, 09,
	a) a > A		ПК 4.1,
	b) a		ПК 4.2
	c) $a = A$		
	d) $a \ge A$		
	e) $a \le A$		
4.	Под ошибкой или погрешностью ∆а приближенного числа а обычно понимается разность между соответствующим точным числом А и данным приближением, т.е.	a	OK 01, 02, 03, 04, 05, 09, ПК 4.1,
	a) $\Delta a = A - a$		ПК 4.2
	b) $\Delta a = A + a$		
	c) $\Delta a = A/a$		
	d) $a = \Delta a - A$		
	e) $A = \Delta a + A$		
5.	Если ошибка положительна А>, то	a	ОК 01, 02, 03, 04,
	a) $\Delta a > 0$		05, 09,
	b) Δa		ПК 4.1,
	c) $\Delta a = 0$		ПК 4.2
	d) $\Delta a \leq 0$		
	e) a > a		
6.	Абсолютная погрешность приближенного числа	a	OK 01, 02, 03, 04, 05, 09,
	a) $\Delta I = \Delta$		ПК 4.1,
	b) $\Delta a = a$		ПК 4.2

	c) $ a = \Delta$		
	d) $A = \Delta a $		
	e) $\Delta a = \Delta B $		
7.	Предельную абсолютную погрешность вводят если	a	OK 01, 02, 03, 04, 05, 09,
	а) число А не известно		ПК 4.1,
	b) число а не известно		ПК 4.2
	c) Δ не известно		
	d) A – а не известно e) не известно B		
8.	Определить предельную абсолютную погрешность числа a = 3,14, заменяющего	a	OK 01, 02, 03, 04, 05, 09,
	число π a) 0.002		ПК 4.1,
	a) 0,002		ПК 4.2
	b) 0,001		
	c) 3,141		
	d) 0,2 e) 0,003		
9.			OV 01 02 02 04
9.	Числовой ряд названия сходящимся, если	a	OK 01, 02, 03, 04, 05, 09,
	а) существует предел последовательности его частных сумм		ПК 4.1,
	b) можно найти сумму ряда		ПК 4.2
	с) существует последовательность		
	d) частные суммы равны нулю		
	е) существует предел разности		
10.	С помощью этого метода число верных цифр примерно удваивается на каждом этапе по сравнению с первоначальным количеством	a	OK 01, 02, 03, 04, 05, 09, ПК 4.1,
	а) процесс Герона		ПК 4.2
	b) формула Тейлора		
	с) формула Маклорена		
	d) метод Крамера		
	е) процесс Даломбера		
11.) Определить состав корней уравнения x4+8x3- 12x2+104x-20=0	a	OK 01, 02, 03, 04, 05, 09,
	а) один положительный и один отрицательный		ПК 4.1, ПК 4.2

	1)	<u> </u>	
	b) нет ни одного корня		
	с) невозможно найти число корней		
	d) уравнение не имеет положительных корней		
	е) два отрицательных корня		
12.	Две матрицы одного и того же типа, имеющие одинаковое число строк и столбцов, и соответствующие элементы их равны, называют	a	OK 01, 02, 03, 04, 05, 09, ПК 4.1,
	а) равными		ПК 4.2
	b) одинаковыми		
	с) разными по рангу		
	d) схожими		
	е) транспонированными		
13.	Укажите название матрицы –А=(-1)А	a	OK 01, 02, 03, 04,
	а) противоположная		05, 09,
	b) обратная		ПК 4.1,
	с) равная		ПК 4.2
	d) матрица не существует		
	е) транспонированная		
14.	Заменив в матрице типа m×n строки соответственно столбцами получим	a	OK 01, 02, 03, 04, 05, 09,
	а) транспонированную матрицу		ПК 4.1,
	b) равную матрицу		ПК 4.2
	с) среднюю матрицу		
	d) обратную матрицу		
	е) квадратную матрицу		
15.	С какой матрицей совпадает дважды транспонированная матрица	a	OK 01, 02, 03, 04, 05, 09,
	а) с исходной		ПК 4.1,
	b) с обратной		ПК 4.2
	с) с нулевой		
	d) с единичной		
	е) с квадратной		
16.	Разность между наименьшим из чисел m и n и рангом матрицы называется	a	OK 01, 02, 03, 04, 05, 09,
	а) дефектом		ПК 4.1,
		1	

	b) пределом		ПК 4.2
	, -		1110 4.2
	с) рангом		
	d) определителем		
	е) разницей		
17.	Метод, представляющий собой конечные алгоритмы для вычисления корней системы	a	OK 01, 02, 03, 04, 05, 09,
	а) точный метод		ПК 4.1,
	b) метод релаксации		ПК 4.2
	с) метод итерации		
	d) приближенный метод		
	е) относительный метод		
18.	Целый однородный полином второй степени	a	OK 01, 02, 03, 04,
	от п переменных называется		05, 09,
	а) квадратичной формой		ПК 4.1,
	b) кубической формой		ПК 4.2
	с) прямоугольной формой		
	d) треугольной формой		
	е) матричной формой		
19.	Любая совокупность n-мерных векторов, рассматриваемая с установленными в ней операциями сложения векторов и умножения вектора на число, не выводящими за пределы этой совокупности называется	a	OK 01, 02, 03, 04, 05, 09, ПК 4.1, ПК 4.2
	а) линейным векторным пространством b) плоскостью векторов		
	с) скалярным произведением векторов		
	d) суммой векторов		
	е) сходимостью векторного пространства		
20.	Название любой совокупности п линейно независимых векторов n-мерного пространства	a	OK 01, 02, 03, 04, 05, 09,
	а) базис		ПК 4.1,
	b) орт		ПК 4.2
	с) вектор		
	d) координата		
	е) скаляр		
2.1	Кто опубликовал формулу для решения	a	OK 01, 02, 03, 04,
21.	кубического уравнения?	u	05, 09,

	а) Кардано		ПК 4.1,
	b) Галуа		ПК 4.2
	с) Абеле		
	d) Дарбу		
	е) Фредгольм		
22.	При контроле решения алгебраического уравнения может быть полезна:	a	OK 01, 02, 03, 04, 05, 09,
	а) Теорема Виета		ПК 4.1,
	b) Теорема Ньютона		ПК 4.2
	с) Теорема Перрона		
	d) Теорема Штурма		
	е) Теорема Бюдана-Фурье		
23.	Последовательность, удовлетворяющая условию Коши, называется:	a	OK 01, 02, 03, 04, 05, 09,
	а) фундаментальной последовательностью		ПК 4.1,
	b) рекуррентной последовательностью		ПК 4.2
	с) итеративной последовательностью		
	d) двусторонней последовательностью		
	е) односторонней последовательностью		
24.	Как иначе называют метод Ньютона?	a	OK 01, 02, 03, 04,
	а) Метод касательных		05, 09,
	b) Метод коллокации		ПК 4.1,
	с) Метод прогонки		ПК 4.2
	d) Метод итераций		
	е) Метод хорд		
25.	Метод Ньютона	a	OK 01, 02, 03, 04,
	а) обладает свойством самоисправляемости и		05, 09,
	имеет высокую скорость сходимости		ПК 4.1,
	b) дает большой выигрыш во времени		ПК 4.2
	с) занимает очень много времени		
	d) предельно прост		
	е) надежен		
26.	Точный метод вычисления интегралов был предложен:	a	OK 01, 02, 03, 04, 05, 09,
	а) Ньютоном и Лейбницем		ПК 4.1,

	b) Ньютоном и Гауссом		ПК 4.2
	с) Гауссом и Стирлингом		
	d) Вольтерром		
	е) Гауссом и Крамером		
27.	Приближенные методы вычисления	a	OK 01, 02, 03, 04,
	интегралов можно разделить на 2 группы:		05, 09,
	а) аналитические и численные		ПК 4.1,
	b) аналитические и графические		ПК 4.2
	с) систематические и численные		
	d) систематические и случайные		
	е) приближенные и неприближенные		
28.	Все методы вычисления интегралов делятся на:	a	OK 01, 02, 03, 04, 05, 09,
	а) Точные и приближенные		ПК 4.1,
	· -		ПК 4.1,
	b) Прямые и итеративные		11K 4.2
	с) Прямые и косвенные		
	d) Аналитические и графические		
20	е) Приближенные и систематические		0.11.01.02.02.04
29.		a	OK 01, 02, 03, 04, 05, 09,
	а) Общая скорость и свойство самоисправляемости		ПК 4.1,
	b) Свойство самоисправляемости		ПК 4.2
	с) Общая скорость		TIK 4.2
	d) Легкость при решении		
	е) Требуется нахождение производной		
30.	Метод хорд имеет еще одно имя:	a	OK 01, 02, 03, 04,
50.	а) Метод пропорциональных частей	a	05, 09,
	b) Метод касательных		ПК 4.1,
			ПК 4.2
	с) Метод бисекций		
	d) Метод коллокации		
	е) Метод прогонки		

2 СТРУКТУРА И ПЕРЕЧЕНЬ КОНТРОЛЬНО-ОЦЕНОЧНЫХ МАТЕРИАЛОВ (для текущего контроля)

Вопросы и задания					
2.1 Перечень теоретических вопросов к экзамену					

1.	Приближенные числа и действия над ними.	У1-У4,
2.	Приближенные значения. Абсолютная и относительная погрешность.	31,32
	Верные и значащие цифры.	
3.	Представление чисел в ЭВМ. Вычисление погрешностей	
	арифметических действий.	
4.	Учет погрешностей вычислений по заданной формуле. Вычисления по	
	правилам подсчета цифр.	
5.	Вычисления со строгим учетом предельных абсолютных	
	погрешностей.	
6.	Вычисления по методу границ.	
7.	Отделение и уточнение корня уравнения методом половинного	
	деления.	
8.	Метод простой итерации для решения уравнений.	
9.	Нахождение корня уравнения методом касательных.	
	. Нахождение корня уравнения методом хорд.	
	. Нахождение корня уравнения методом хорд и касательных.	
12	. Решение систем линейных алгебраических уравнений (СЛАУ)	
	численными методами. Метод Гаусса.	
13.	. Метод простой итерации для системы линейных алгебраических	
	уравнений (СЛАУ).	
	. Интерполяционный многочлен Лагранжа.	
	. Первая интерполяционная формула Ньютона.	
	. Вторая интерполяционная формула Ньютона.	
	. Экстраполирование функций.	
	. Численное интегрирование. Квадратурные формулы Ньютона-Котеса.	
	. Численное интегрирование. Формулы трапеций.	
	. Численное интегрирование. Формула Симпсона Численные методы решения обыкновенных дифференциальных	
41	уравнений. Метод Эйлера.	
22	. Численные методы решения обыкновенных дифференциальных	
22	уравнений. Метод Рунге-Кутта.	
22	уравнении. Метод гунге-кутта. . Численное решение задач оптимизации.	
	. Численное решение задач оптимизации Поиск минимума функции одной переменной. 25. Поиск минимума	
2 4 ,		
	функции многих переменных.	
	2.2 Типовые практические задания к экзамену	
	1. Составьте программу интегрирования по формуле Симпсона с исполь-	У1-У4,
		31,32

	зованием оценки точности методом повторного счета.
2.	Функция $y \square \square 1$ x $e^{2 \square x}$ имеет единственный минимум на отрезке [0; 5]. Найдите его методом дихотомии с точностью до $1\cdot 10^{-5}$. 0,485
3.	$\sin(\)x$ Дан интеграл I \square $_0$ $_{,1}$ $____x$. Найдите приближенное значение
	интеграла I по формуле трапеций и Симпсона с точностью до 10 ⁻³ .
4.	Решите методом Эйлера дифференциальное уравнение $y \mid \Box \cos y \Box 3x$ с начальным значением $y(0) \Box 1,3$ на отрезке $[0;1]$, приняв шаг h=0,2.
5.	Уточните корень уравнения $\sin(2)x \square \ln(x) \square 0$ методом половинного
	деления на отрезке [1,3; 1,5] с точностью до 1·10 ⁻⁴ . 1
	dx
6.	Вычислите интеграл I \square
	зок [0; 1] на 10 равных частей. Оцените погрешность вычислений.
7.	Функция $y \square \square 1$ x $e^{2 \square x}$ имеет единственный минимум на отрезке [0; 5]. Найдите его методом золотого сечения с точностью до $1 \cdot 10^{-5}$.
8.	В результате пятикратных измерений периода колебаний маятника студент получил результаты (в секундах): 4,8; 5; 4,9; 4,8 и 5. Основываясь на этих результатах установите наилучшее приближение значения периода и его границы абсолютной и относительной погрешностей.
9.	В результате измерения длины стола линейкой сантиметровыми делениями установлено, что значение длины находится между делениями 99 и 100 см. Укажите границы абсолютной и относительной погрешностей значений длины, если за наилучшее приближение принято ее среднее значение 99,5 см.
10.	Дана функция, заданная таблицей

		T	T				1
X	2	2,14	2,28	2,42	2,56	2,7	2,84
y	7,27	7,72	7,89	7 74	7,2	76,23	
Вычислите значение этой функции в точке 2,6, используя схему ручных вычислений по интерполяционной формуле Ньютона.							
		_					
11. Co	ставьте	программ	у интегр	ирования	по фор	омуле	грапеций с
ис	пользован	ием оцен	ки точност	ти методом	повторно	ого счета	l .
12 VT	оппите к	oneul Vn	ариения с	in(2)r □	$\ln(r)$ Π	0 метоп	ом простой
12. 31	O-HIMIC R	орень ур	ависиил в	III(2)	$III(\lambda)$	о метод	ом простои
ит	ерании на	отрезке [1,3; 1,5] c :	гочностью	ло 1·10 ⁻⁴ .	1	
	1 '	1 .)-)				
			dx				
			П				
13. Вь	ичислите	интеграл	<i>I</i> 🗖 1	□ х₂ по	формуле	трапеци	ій, разделив
OT	резок						
			0				
	11 mg 5 ng	DILLIV HOO	гей. Оцени	та погран	HOOTI BLU	шананый	<u> </u>
[υ,	тј на 5 ра	вных час	теи. Оцени	пе погреш	ность выч	ислении	l.
14. Да	на функці	ия, заданн	ая таблице	ей			
X	0,	12	2,32	2,83	4,:	57	6,39
у	-4,	29	0,38	2,93	3,	72	1,23
Вы	ічислите з	начение э	той функц	ии в точке	1,36, испо	ользуя сх	кему ручных
ВЫ	числений	по форму	ле Лагран	жа.			
15. Пр	оизведите	указанні	ые действи	я и опреде	лите абсо	лютные	И
OT	носительн	ые погрег	пности рез	вультатов (исходные	числа з	аданы
веј	оными в с	трогом см	њсле цифј	рами):			
	a) 24,37[70.18.					
	,						
	<i>б</i>) 18,437	′⊔ 24,9;					
	в) 0,65 1 <u>9</u>	984∏					
	e) 8124,6						
16 Pa			ений				
16. Решите систему уравнений							
\Box 2 x_1 \Box 5 x_2 \Box x_3 \Box \Box 2;							
_							
$\Box 2x_1 \Box 1, 2x_2 \Box 4, 3x_3 \Box \Box 1, 1; \ \Box \Box 6x_1 \Box 3, 3x_2 \Box 2x_3 \Box \Box 0, 7. \ \Box$ методом							
простой итерации с помощью программы для ЭВМ.							
	2 T	~	` `		1 1		
2.3 Типовые билеты для подготовки к дифференцированному зачету/экзамену (по темам)							
		<i>3</i> 44	ын у/ ЭКЗИМ	спу (по те	svi usvi j		

Гема 1. 🤄	Элементы теории погрешностей	У1-У4,		
Вариант 1				
-	Определить какое из равенств $\frac{7}{3}$ \square 2,33; $\sqrt{42}$ \square 6,48 точнее.	31,32		
2.	Округлить сомнительные цифры числа 3,4852□0,0047 , оставив верные знаки:			
	а) в узком смысле;б) в широком смысле.Определить предельные абсолютную и относительную погрешности результата.			
3.	• •			
4.	Вычислить и определить предельные абсолютную и относительную погрешности результата. Исходное выражение, $X \square $			
	где mab $ca\Box$ 5,14 \Box 0,005 , b \Box 2,44 \Box 0,006 , c \Box 7,2 \Box 0,07 , m \Box 7,8 \Box 0,05 .			
5.	Вычислить и определить предельные абсолютную и относительную погрешности результата, пользуясь общей формулой погрешности:			

1) в узком смысле; 2) в широком смысле. Исходное выражение,

$$X \square \xrightarrow{\lg m \ a} \sqrt{\frac{1}{(c \ a} \square \square b},$$
 где $a \square 5,14 \square 0,005,$ $b \square 2,44 \square 0,006,$ $c \square 7,2 \square 0,07,$ $m \square 7,8 \square 0,05.$

Вариант 2

- 1. Определить какое из равенств 2129 □ 0,724; 83 □ 9,11 точнее.
- 2. Округлить сомнительные цифры числа 0,48652□0,0089 , оставив верные знаки:
 - а) в узком смысле;
 - б) в широком смысле.

Определить предельные абсолютную и относительную погрешности результата.

- 3. Найти предельные абсолютную и относительную погрешности числа 2,6087, если он имеет только верные цифры: 1) в узком смысле; 2) в широком смысле.
- 4. Вычислить и определить предельные абсолютную и относительную погрешности результата. Исходное выражение, $X \,\square^{\frac{3}{\sqrt{c^2}}} \,\square[\,\,\square\,\,]_2$, где

mab

 $a \square 3,85 \square 0,01, b \square 20,18 \square 0,002, c \square 2,04 \square 0,01, m \square 7, 2 \square 0,07.$

5. Вычислить и определить предельные абсолютную и относительную погрешности результата, пользуясь общей формулой погрешности: 1) в узком смысле; 2) в широком смысле. Исходное выражение,

$$X \square$$
 $\sqrt[3]{c^2}$ $\square[\square]_2$, где $a \square 3,85 \square 0,01$, $b \square 20,18 \square 0,002$, $c \square 2,04$ $\square 0,01$, $m a b$ $m \square 7,2 \square 0,07$.

Тема 1. Элементы теории погрешностей					
Вариант 1					
1.	1. Как оформляются вычисления со строгим учетом предельных				
	погрешностей при пооперационном учете ошибок?				
2.	Произведите указанные действия и определите абсолютные и				
	относительные погрешности результатов:				
	a) $24,1\Box 0,037;$				
	<i>δ</i>) 24,1 1□ ,038;				
	<i>в</i>) 0,65 19,□84				
	e) 8124,6/2,8				
3.	Исходные значения аргумента заданы цифрами, верными в строгом				
	смысле. Произведите вычисления и определите число верных в				

строгом смысле цифр в следующих значениях элементарных функций:

$$a\ arctg)$$
 \square 8,45 ; \square

 δe) 2,01

- 4. Вычислите значения заданных выражений по правилам подсчета цифр двумя способами:
 - 1) С пооперационным анализом результатов;
 - 2) С итоговой оценкой окончательного результата (у числовых данных все цифры верные):

$$\begin{array}{c}
3\sqrt{6,77} & 2,34_{1,27}; \\
a^{3}_{3,95} & 7,08_{2} \square e \square \\
6) & \frac{\ln(6,93^{3} \square 4,5)}{\sqrt{34,8}}
\end{array}$$

- 1. По какой причине в вычислениях следует избегать вычитания близких по величине чисел?
- 2. Произведите указанные действия и определите абсолютные и относительные погрешности результатов:

- *a*) 224,1 \square 0,0987;
- *б*) 34,16□1,8;
- *e*) 1,65 29,874□
- *z*) 824,6/2,81
- 3. Исходные значения аргумента заданы цифрами, верными в строгом смысле. Произведите вычисления и определите число верных в строгом смысле цифр в следующих значениях элементарных функций:

$$a\ tg)$$
 \square 8,45; \square

$$(6e)_{2,34}$$

- 4. Вычислите значения заданных выражений по правилам подсчета цифр двумя способами:
 - 3) С пооперационным анализом результатов;
 - 4) С итоговой оценкой окончательного результата (у числовых данных все цифры верные):

$$\begin{array}{c}
 \frac{4\sqrt[3]{6,47}}{a)_{3,95}} \\
 a)_{3,95} 7,8_3 \square tg(2,34); e \square \\
 34,5) \cos(6,93 \square \\
 \hline
 6) \qquad \sqrt[3]{34,8}
\end{array}$$

Тема 2. Приближённые решения алгебраических и трансцендентных уравнений Вариант 1	У1-У4, 31,32
1. Сформулировать алгоритм нахождения корней нелинейных уравнений:	31,32
методом половинного деления;	
методом итерации.	
2. Найти корень нелинейного уравнения $x^3 \square \square \square x$ 0.20 с помощью MS Excel:	
а) методом половинного деления;	
b) методом итерации.	
3. Написать программу, находящую корни нелинейного уравнения, на языке PascalABC:	
а) методом половинного деления;	
b) методом итерации.	
Вариант 2 1. Сформулировать алгоритм нахождения корней нелинейных уравнений:	
а) методом половинного деления;	
b) методом итерации.	
2. Найти корень нелинейного уравнения $x^3 \square \square \square x$ 0.20 с помощью MS Excel:	
а) методом половинного деления;	
b) методом итерации.	
3. Написать программу, находящую корни нелинейного уравнения, на языке PascalABC:	
а) методом половинного деления;	
b) методом итерации.	

Тема 2. Приближённые решения алгебраических и трансцендентных

уравнений Вариант 1

1. Сформулировать алгоритм нахождения корней нелинейных уравнений: а)	
методом касательных;	
b) методом хорд;	
с) комбинированным методом хорд и касательных.	
2. Найти корень нелинейного уравнения $x^3 \square \square \square x$ 0.20 с помощью MS Excel:	
а) методом касательных;	
b) методом хорд;	
с) комбинированным методом хорд и касательных.	
3. Написать программу, находящую корни нелинейного уравнения, на языке PascalABC:	
а) методом касательных;	
b) методом хорд;	
с) комбинированным методом хорд и касательных.	
Вариант 2 1. Сформулировать алгоритм нахождения корней нелинейных уравнений: a)	
методом касательных;	
b) методом хорд;	
с) комбинированным методом хорд и касательных.	
2. Найти корень нелинейного уравнения $x^3 \square \square \square x$ 0.20 с помощью MS Excel:	
а) методом касательных;	
b) методом хорд;	
с) комбинированным методом хорд и касательных.	
3. Написать программу, находящую корни нелинейного уравнения, на языке PascalABC:	
а) методом касательных;	

b) методом хорд;	
с) комбинированным методом хорд и касательных.	
Тема 3. Решение систем линейных алгебраических уравнений	У1-У4,
Вариант 1	31,32
1. Сформулировать алгоритм нахождения корней системы линейных уравнений:	
а) методом Гаусса;	
b) методом простой итерации.	
а) Найти корни системы линейных уравнений	
$\square x_1 \square 5x_2 \square 2x_3 \square 1;$	
□	
ке PascalABC:	
а) методом Гаусса;	
b) методом простой итерации.	
Вариант 2	
1. Сформулировать алгоритм нахождения корней системы линейных уравнений:	
а) методом Гаусса;	
b) методом простой итерации.	
2. Найти корни системы линейных уравнений $\Box 2x_1 \Box 5x_2 \Box x_3 \Box \Box 2$;	

□2x₁ □1,2x₂ □ 4,3x₃ □
□1,1; □□6x₁ □ 3,3x₂ □ 2x₃ □ □0,7.
□ с помощью MS Excel:
а) методом Гаусса;
b) методом простой итерации.

3. Написать программу, находящую корни системы линейных уравнений, на языке PascalABC:

- а) методом Гаусса;
- b) методом простой итерации.

Вариант 3

- 1. Сформулировать алгоритм нахождения корней системы линейных уравнений:
 - а) методом Гаусса;
- b) методом простой итерации.
- 2. Найти корни системы линейных уравнений $\Box 2x_1$

 \square 4 x_2 \square 1,4 x_3 \square \square 0,6;

 \square $x x_1 \square _2 \square 3x_3 \square 2;$

 $\square_{2,1x x_1 \square_2 \square 2x_3 \square 2,3.}$

□ с помощью MS Excel:

- а) методом Гаусса;
- b) методом простой итерации.
- 3. Написать программу, находящую корни системы линейных уравнений, на языке PascalABC:
 - а) методом Гаусса;
 - b) методом простой итерации.

- 1. Сформулировать алгоритм нахождения корней системы линейных уравнений:
 - а) методом Гаусса;

b) методом простой итерации.	
2. Найти корни системы линейных уравнений $\Box 1,5x_1 \Box 5x_2 \Box 2x_3 \Box 0;$	
□	
b) методом простой итерации.3. Написать программу, находящую корни системы линейных уравнений, на языке PascalABC:	
а) методом Гаусса;b) методом простой итерации.	

Тема 4. Интерполирование и экстраполирование функций Вариант 1

У1-У4, 31,32

1. Сформулировать алгоритм интерполирования функций интерполяционным многочленом Лагранжа.

2. Для функции, заданной таблицей:

X	0,2143	0,2572	0,3269	0,4282	0,5657
f(x)	4,3002	4,2037	4,0830	3,9946	4,0603

- а) составьте интерполяционный многочлен Лагранжа. Произведите проверку полученного результата, вычислив и сопоставив узловые значения функции;
- b) вычислите значения этой функции в точке 0,25, используя программу Excel.
- 3. Составьте программу, вычисляющую значения функции с помощью интерполяционной формулы Лагранжа на языке PascalABC.

Вариант 2

1. Сформулировать алгоритм интерполирования функций интерполяционным многочленом Лагранжа.

2. Для функции, заданной таблицей:

X	1,2214	1,3802	1,5872	1, 8571	2,2099
f(x)	16,7391	18,0820	20,0003	22,7888	26,9367

- а) составьте интерполяционный многочлен Лагранжа. Произведите проверку полученного результата, вычислив и сопоставив узловые значения функции;
- b) вычислите значения этой функции в точке 1,45, используя программу Excel.
- 3. Составьте программу, вычисляющую значения функции с помощью интерполяционной формулы Лагранжа на языке PascalABC.

Тема 4. Интерполирование и экстраполирование функций

У1-У4, 31,32

- 1. Сформулировать алгоритм интерполирования функций:
- а) первой интерполяционной формулой Ньютона;

- b) второй интерполяционной формулой Ньютона.
- 2. Для функции, заданной таблицей:

X	2	2,14	2,28	2,42	2,56
f(x)	1,1293	1,2814	1,4407	1,6066	1,7784

- а) составьте первую и вторую интерполяционные формулы Ньютона. Произведите проверку полученного результата, вычислив и сопоставив узловые значения функции;
- b) вычислите значения этой функции в точках 2,09 и 2,45, используя программу Excel.
- 3. На языке PascalABC составьте программу субтабулирования:
- а) по первой интерполяционной формуле Ньютона;
- b) по второй интерполяционной формуле Ньютона на языке PascalABC.

- 1. Сформулировать алгоритм интерполирования функций:
- а) первой интерполяционной формулой Ньютона;
- b) второй интерполяционной формулой Ньютона.
- 2. Для функции, заданной таблицей:

X	0,5	1,01	1,52	2,03	2,54
f(x)	0,4994	1,0049	1,5025	1,9883	2,4585

- а) составьте первую и вторую интерполяционные формулы Ньютона. Произведите проверку полученного результата, вычислив и сопоставив узловые значения функции;
- b) вычислите значения этой функции в точках 0,8 и 2,05, используя программу Excel.
- 3. На языке PascalABC составьте программу субтабулирования:
- а) по первой интерполяционной формуле Ньютона;
- b) по второй интерполяционной формуле Ньютона на языке PascalABC.

Тема 4. Интерполирование и экстраполирование функций Вариант 1

У1-У4, 31,32

1. Сформулировать алгоритм:

- а) интерполирования функций кубическим сплайном;
- b) экстраполирования функций.
- 2. Постройте кубический сплайн для функции у=f(x), заданной таблицей:

X	2	4	6	8
у	3	-2	5	-1

3. Для таблично заданной функции:

X	0,5	1,01	1,52	2,03	2,54
f(x)	1,5576	0,3570	0,0653	0,0080	0,0006

методом экстраполяции с помощью интерполяционных формул Ньютона вычислите значения функции соответственно в точках 1,61 и 1,68.

Вариант 2

- 1. Сформулировать алгоритм:
- а) интерполирования функций кубическим сплайном;
- b) экстраполирования функций.
- 2. Постройте кубический сплайн для функции y=f(x), заданной таблицей

X	3	5	7	9
у	5	-1	4	-3

3. Для таблично заданной функции:

X	2	2,14	2,28	2,42	2,56
f(x)	1,1293	1,2814	1,4407	1,6066	1,7784

методом экстраполяции с помощью интерполяционных формул Ньютона вычислите значения функции соответственно в точках 1,61 и 2,68.

Тема 5.	исленное интегрирование	У1-У4,
Вариант	1	31,32
1.	Сформулировать алгоритм нахождения приближенного значения	
	интеграла:	
a)	по формуле левых прямоугольников; по	
b)	формуле правых прямоугольников;	
c)		
,	по формуле средних прямоугольников;	
2.	0,5	
	Найти приближенное значение интеграла $I \square \square fx dx()$, где	
	0,2	
	$\sin()x$	
	$fx()\Box \overline{:}$	
	X	

a)	по формуле левых прямоугольников с точностью □□10□3;	
b)	по формуле правых прямоугольников с точностью $\Box\Box 10^{\Box 3}$;	
c)	по формуле средних прямоугольников с точностью $\Box\Box 10^{\Box 3}$.	
3.	Составьте программу интегрирования на языке PascalABC:	
a)	по формуле левых прямоугольников;	
b)	по формуле правых прямоугольников;	
c)	по формуле средних прямоугольников.	
Вариант	2	
1.	Сформулировать алгоритм нахождения приближенного значения интеграла:	
a)	по формуле левых прямоугольников;	
b)	по формуле правых прямоугольников;	
c)	по формуле средних прямоугольников;	
2.	0,8	
	Найти приближенное значение интеграла $I \square \square_{0,3} fx dx()$, где	
	$ \begin{array}{c} \cos(x) f \\ x() \square \\ \hline $	

a)	по формуле левых прямоугольников с точностью □□10□3;	
b)	по формуле правых прямоугольников с точностью □□10□3;	
c)	по формуле средних прямоугольников с точностью □□10□3.	
3.	Составьте программу интегрирования на языке PascalABC:	
a)	по формуле левых прямоугольников;	
b)	по формуле правых прямоугольников;	
c)	по формуле средних прямоугольников.	
Гема 5. ч	Іисленное интегрирование	У1-У4
Вариант	1	31,32
1.	Сформулировать алгоритм нахождения приближенного значения интеграла:	

по формуле трапеций; a) b) по формуле Симпсона. 2. Найти приближенное значение интеграла $I \square \square f x dx()$, где sin()x $f x() \square \overline{:}$ а) по формуле трапеций с точностью $\square \square 10^{\square 3}$; b) по формуле Симпсона с точностью $\Box\Box 10^{\Box 3}$; 3. Составьте программу интегрирования на языке PascalABC: а) по формуле трапеций; b) по формуле Симпсона. Вариант 2 1. Сформулировать алгоритм нахождения приближенного значения интеграла: а) по формуле трапеций; b) по формуле Симпсона.

2.	0,8	
На	йти приближенное значение интеграла $I \square \square_{0,3} fx dx()$, где	
x($ \frac{\cos(x) f}{\frac{1}{x}} : $	
а) по	формуле трапеций с точностью □□10□3;	
b) по	формуле Симпсона с точностью □□10□3;	
3. Co	ставьте программу интегрирования на языке PascalABC:	
а) по	формуле трапеций;	
b) ^{по}	формуле Симпсона.	
Тема 6. Числ	енное решение обыкновенных дифференциальных уравнений	У1-У4,
Вариант 1		31,32
1. Сформу уравнения:	лировать алгоритм решения обыкновенного дифференциального	
		T
b)	методом Эйлера;	
b) c)	методом Эйлера; усовершенствованным методом ломаных;	
c) d) 2.	усовершенствованным методом ломаных;	
c) d) 2. решения у	усовершенствованным методом ломаных; методом Эйлера-Коши.	
с) d) 2. решения у обыкновенно	усовершенствованным методом ломаных; методом Эйлера-Коши. Найти с помощью программы Excel приближенные значения го дифференциального уравнения (ОДУ) у '\(\)	
с) d) 2. решения у обыкновенно	усовершенствованным методом ломаных; методом Эйлера-Коши. Найти с помощью программы Excel приближенные значения го дифференциального уравнения (ОДУ) y ' \square $_\2$ \square \square x 1 на от 1 \square	
с) d) 2. решения у обыкновенно резке х□[0;1,5	усовершенствованным методом ломаных; методом Эйлера-Коши. Найти с помощью программы Excel приближенные значения го дифференциального уравнения (ОДУ) y ' \Box	
с) d) 2. решения у обыкновенно резке х□[0;1,5	усовершенствованным методом ломаных; методом Эйлера-Коши. Найти с помощью программы Excel приближенные значения го дифференциального уравнения (ОДУ) у '\	
 с) d) 2. решения у обыкновенно резке х□[0;1,5 a) b) 	усовершенствованным методом ломаных; методом Эйлера-Коши. Найти с помощью программы Excel приближенные значения го дифференциального уравнения (ОДУ) у '\	
с) d) 2. решения у обыкновенно резке х□[0;1,5 a) b) с) 3.	усовершенствованным методом ломаных; методом Эйлера-Коши. Найти с помощью программы Excel приближенные значения го дифференциального уравнения (ОДУ) у '\	

- b) усовершенствованный метод ломаных;
- с) метод Эйлера-Коши.

- 1. Сформулировать алгоритм решения обыкновенного дифференциального уравнения:
 - а) методом Эйлера;
 - b) усовершенствованным методом ломаных;
 - с) методом Эйлера-Коши.
- 2. Найти с помощью программы Excel приближенные значения решения обыкновенного дифференциального уравнения (ОДУ) у $y' \square \square x$ сов на отрезке $x\square[0,3;1,9]$ с шагом h=0,1 при начальном усло1,5 вии $y(0,3) \square 0,9$, используя
 - а) метод Эйлера;
 - b) усовершенствованный метод ломаных;
 - с) метод Эйлера-Коши.
- 3. Написать программу решения обыкновенного дифференциального уравнения на языке PascalABC, используя:
 - а) метод Эйлера;
 - b) усовершенствованный метод ломаных;
 - с) метод Эйлера-Коши.

метод Рунге-Кутта четвертого порядка.

- 3. Написать программу решения обыкновенного дифференциального уравнения на языке PascalABC, используя:
 - а) метод Эйлера с уточнением;
 - b) метод Рунге-Кутта четвертого порядка.

3 ПЕРЕЧЕНЬ МАТЕРИАЛОВ, ОБОРУДОВАНИЯ И ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ

3.1 Рекомендуемая литература для разработки оценочных средств и подготовки обучающихся к аттестации

Основные источники (печатные издания)

- Богомолов, Н.В. Алгебра и начала анализа: учеб. пособие для СПО/Н.В.Богомолов. – М.: Издательство Юрайт, 2019. – 240 с. – (Серия: Профессиональное образование).
- 2. Данко, П.Е, Попов, А.Г., Кожевникова, Т.Я. Высшая математика в упражнениях и задачах. В 2-х ч. Ч.1: Учеб.пособие для втузов. М.:Высшая школа, 2015. 304 с.
- 3. Данко, П.Е, Попов, А.Г., Кожевникова, Т.Я. Высшая математика в упражнениях и задачах. В 2-х ч. Ч.2: Учеб.пособие для втузов. М.:Высшая школа, 2015. 416 с.
- 4. Численные методы: учебник и практикум для СПО/под ред.У.Г.Пирумова. 5-е изд.,перераб.и доп. М.: Издательство Юрайт, 2019. 421 с. (Серия: Профессиональное образование).

Дополнительные источники (печатные издания)

- Бирюкова, Л.Г. Линейная алгебра и линейное программирование. Практикум: учеб.пособие для СПО/Л.Г.Бирюкова, Р.В.Сагитов; под общ.ред.
 О.В.Татарникова. М.: Издательство Юрайт, 2019. 52 с. (Серия: Профессиональное образование).
- 2. Григорьев, С.Г. Математика: учебник для студ.сред.проф.учреждений/С.Г.Григорьев, С.В.Задулина; под ред.В.А.Гусева. – М.:Издательский центр «Академия», 2015. – 384 с.
- 3. Ларин, С.В. Числовые системы: учебное пособие для СПО/С.В.Ларин. 2-е изд., испр.и доп. М.: Издательство Юрайт, 2018. 177 с. (Серия Профессиональное образование).

Дополнительные источники (электронные издания)

1. Пехлецкий И.Д. Математика: Учеб. для студ. образоват. учреждений сред. проф. образования / И. Д. Пехлецкий. - М.: Издательский центр «Академия», 2014. – 304с.

- 2. Шипачев, В.С. Высшая математика. Базовый курс: Учебник и практикум для бакалавров / В.С. Шипачев. Люберцы: Юрайт, 2015. 447 с.
- 3. Шипачев, В.С. Высшая математика: Учебник и практикум / В.С. Шипачев. Люберцы: Юрайт, 2016. 447 с.

Интернет-ресурсы

- 1. http://www.obrnadzor.gov.ru/ Федеральная служба по надзору в сфере образования и науки"
- 2. http://минобрнауки.pd/ Официальный сайт Министерства образования и науки Российской Федерации
- 3. http://www.school.edu.ru/default.asp Национальный проект "Образование".
- 4. http://window.edu.ru/ Единое окно доступа к образовательным ресурсам
- 5. http://www.matburo.ru/literat.php Сайт популярных книг по математике
- 6. http://www.terver.ru/ Справочник по математике
- 7. Электронная библиотечная система Юрайт http://urait.ru/ebs
- 8. Электронная библиотечная система Знаниум http://znanium.com
- 9. Электронная библиотека издательский центр «Академия» http://www.academiamoscow.ru/elibrary/
- 10. http://fcior.edu.ru/ (информационные, тренировочные и контрольные материалы).