Документ подписан простой электронной подписью Информация о владельце:

ФИО: Коротков Сергей Леонидович

Должность: Директор филиала СамГУПС в г. Ижевске

Дата подписания: 11.07.2024 08:56:26 Уникальный программный ключ:

d3cff7ec2252b3b19e5caaa8cefa396a11af1dc5

Приложение к ППССЗ по специальности 27.02.03 Автоматика и телемеханика на транспорте (железнодорожном транспорте)

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ УЧЕБНОЙ ДИСЦИПЛИНЫ

EH.01 Математика основной профессиональной образовательной программы по специальности 27.02.03 Автоматика и телемеханика на транспорте (железнодорожном транспорте)

Базовая подготовка среднего профессионального образования

Год начала подготовки 2024

Содержание

- 1. Паспорт комплекта контрольно-оценочных средств.
- 2. Результаты освоения учебной дисциплины, подлежащие проверке.
- 3. Оценка освоения учебной дисциплины:
- 3.1Формы и методы оценивания.
- 3.2 Кодификатор оценочных средств.
- 4. Задания для оценки освоения дисциплины.

1. Паспорт комплекта контрольно-оценочных средств

В результате освоения учебной дисциплины ЕН.01 Математика обучающийся должен обладать предусмотренными ФГОС по специальности 27.02.03 Автоматика и телемеханика на транспорте (железнодорожном транспорте) следующими умениями, знаниями, которые формируют общие и профессиональные компетенции, а так же личностными результатами, осваиваемыми в рамках программы воспитания:

ОК.1. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам.

ОК.2. Осуществлять поиск, анализ и интерпретацию информации, необходимой для выполнения задач профессиональной деятельности.

Результаты обучения (освоенные умения, усвоенные знания)	Основные показатели оценки результатов
Умения	
Уметь применять математические методы дифференциального и интегрального исчисления для решения задач	 Применять формулы дифференцирования функций; Находить значения определенных интегралов; Применять производные для решения прикладных задач; Применять определенный интеграл для решения прикладных задач; находить общее решение линейного уравнения первого порядка; находить частное решение линейного уравнения первого порядка; находить общий интеграл линейного однородного уравнения первого порядка; решать уравнения с разделяющимися переменными; находить общее решение уравнения второго порядка с постоянными коэффициентами; находить общее решение уравнений допускающих понижение порядка; находить і-тые члены числового ряда; применять необходимый признак сходимости числовых рядов; исследовать ряды на сходимость с помощью метода Даламбера и метода Коши;
Умение решать задачи дискретной математики	 находить радиус сходимости степенного ряда; проводить операции над множествами и их элементами;
Умение применять основные положения теории вероятностей и математической статистики в профессиональной деятельности;	 решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул; вычислять в простейших случаях вероятности событий на основе подсчета числа исходов; Проводить операции над событиями и находить их вероятности; Составлять закон распределения случайной величины и находить их числовые характеристики.

Умение решать основные прикладные задачи	— Находить приближенное значение
численными методами	определенного интеграла;
	— Находить приближенное значение
	производной функции в точке;
	 Решать дифференциальные уравнения с
	помощью численных методов
Умение использовать методы линейной алгебры;	 Находить определители второго, третьего ,
решать основные прикладные задачи численными	четвертого порядков;
методами	 Решать системы линейных уравнений методом
	Кремера.
Знания	
Знать основные формулы, определения и теоремы	— Ориентироваться в понятиях и формулах
математического анализа	математического анализа
Знать основные формулы, определения и теоремы	 Ориентироваться в понятиях и формулах
дискретной математики	дискретной математики
Знать основные формулы, определения и теоремы	 Ориентироваться в понятиях и формулах
комбинаторики, статистики и теории вероятностей	комбинаторики, статистики и теории
	вероятностей
Знать основные формулы численных методов	 Ориентироваться в понятиях и формулах
	численных методов
Знать основные понятия и методы линейной	 Ориентироваться в формулах линейной
алгебры.	алгебры.
·	<u> </u>

Формой аттестации по учебной дисциплине является экзамен.

2. Результаты освоения учебной дисциплины, подлежащие проверке

В результате аттестации по учебной дисциплине осуществляется комплексная проверка следующих умений и знаний, а также динамика формирования общих, профессиональных компетенций и личностных результатов в рамках программы воспитания:

Результаты обучения: умения, знания и общие компетенции	Показатели оценки результата.	Форма контроля и оценивания.
У1. Уметь применять математические методы дифференциального и интегрального исчисления для решения задач	Наблюдение, текущий контроль, экспертная оценка выполнения практического задания, мониторинг самостоятельной работы	Типы контроля внешний контроль преподавателя за деятельностью обучающихся, - взаимоконтроль - самоконтроль учащихся.
У2.Умение решать задачи дискретной математики	Наблюдение, текущий контроль, экспертная оценка выполнения практического задания, мониторинг самостоятельной работы	Текущий контроль – по каждой теме: - устный опрос; - оценка подготовленных
У3. Умение применять основные положения теории вероятностей и математической статистики в профессиональной деятельности	Наблюдение, текущий контроль, экспертная оценка выполнения практического задания, мониторинг самостоятельной работы	обучающимися сообщений. <i>Итоговый контроль</i> — зачет: - контрольные и самостоятельные работы на знание основных тем курса
У4. Умение решать основные прикладные задачи численными методами	Наблюдение, текущий контроль, экспертная оценка выполнения практического задания, мониторинг самостоятельной работы	- устные ответы учащихся. Критерии оценки ответов на итоговом занятии: - уровень усвоения
У5. Умение решать задачи линейной алгебры.	Наблюдение, текущий контроль, экспертная оценка выполнения практического задания, мониторинг самостоятельной работы Наблюдение, текущий контроль, экспертная оценка выполнения практического задания,	обучающимися материала, предусмотренного учебной программой дисциплины; - обоснованность, логичность, четкость, ясность, полнота изложения ответов.
31. Знать основные формулы, определения и теоремы математического анализа	мониторинг самостоятельной работы	Анализ выполнения заданий для самостоятельной работы.: Наблюдение и оценка демонстрации обучающимися знаний и практических умений по изучаемым темам.
32. Знать основные формулы, определения и теоремы дискретной математики	Наблюдение, текущий контроль, экспертная оценка выполнения практического задания, мониторинг самостоятельной работы	Решение заданий в тестовой форме. Экзамен по билетам.

22 2 1	II-6	
33. Знать основные формулы,	Наблюдение, текущий контроль,	
определения и теоремы	экспертная оценка выполнения	
комбинаторики, статистики и	практического задания,	
теории вероятностей	мониторинг самостоятельной	
	работы	
34. Знать основные формулы	Наблюдение, текущий контроль,	
численных методов	экспертная оценка выполнения	
	практического задания,	
	мониторинг самостоятельной	
	работы	
ОК 01 Выбирать способы	-демонстрация интереса к	экспертное наблюдение и оценка
решения задач	будущей профессии, понимание	на практических занятиях,
профессиональной деятельности	основных решаемых	выполнение тренировочных и
применительно к различным	профессиональных задач, а	зачетных заданий (ИДЗ),
контекстам.	также понимание потребности	решение ситуационных задач,
	общества к данной профессии	различные виды опроса,
	применять математические	аналитический обзор изученного
	методы для решения	материала, контрольные работы
	профессиональных задач	
ОК 02 Осуществлять поиск,	обоснование выбора и	экспертное наблюдение и оценка
анализ и интерпретацию	применения методов и способов	на практических занятиях,
информации, необходимой для	решения профессиональных	выполнение тренировочных и
выполнения задач	задач в области ремонта	зачетных заданий (ИДЗ),
профессиональной деятельности.	электрооборудования;	решение ситуационных задач,
	демонстрация эффективности и	различные виды опроса,
	качества выполнения	аналитический обзор изученного
	профессиональных задач;	материала, контрольные работы

3. Оценка освоения учебной дисциплины.

3.1. Формы и методы контроля.

Предметом оценки служат умения и знания, предусмотренные ФГОС СПО по дисциплине EH.01 Математика, направленные на формирование общих и профессиональных компетенций, а также личностных результатов в рамках программы воспитания.

Контроль и оценка освоения учебной дисциплины по темам (разделам)

	Формы и методы контроля								
Элемент учебной	Теку	щий контроль	Рубежный	і́ контроль	Промежуточная аттестация				
дисциплины	Формы контроля	Проверяемые ОК, У, 3, ЛР	Формы контроля	Проверяемые ОК, У, 3, ЛР	Форма контроля	Проверяемые ОК, У, 3, ЛР			
Раздел 1. Основы линейной алгебры		OK 01, OK 02							
Тема 1.1 Комплексные числа	Задачи	OK 01, OK 02	Практическо е занятие №1,2	OK 01, OK 02					
Раздел 2. Матрицы и определители		OK 01, OK 02							
Тема 2.1. Матрицы и определители	Задачи	OK 01, OK 02	Практическо е занятие №3	OK 01, OK 02					
Раздел 3. Основы дискретной математики		OK 01, OK 02							
Тема 3.1. Теория множеств	Задачи	OK 01, OK 02	Практическо е занятие №4	OK 01, OK 02					
Раздел 4. Основы математического анализа	Задачи	OK 01, OK 02							
Тема 4.1. Функции и их свойства	Задачи	OK 01, OK 02	Практическо е занятие №5,6,7	OK 01, OK 02					
Тема 4.2. Графическое представление функций	Задачи	OK 01, OK 02							
Тема 4.3. Исследование функций	Задачи	OK 01, OK 02	Практическо е занятие №8	OK 01, OK 02					
Тема 4.4. Дифференциальные уравнения	Задачи	OK 01, OK 02	Практическо е занятие №9	OK 01, OK 02					
Тема 4.5. Ряды		OK 01, OK 02							
Раздел 5. Алгебра логики		OK 01, OK 02							
Тема 5.1 Системы счисления в алгебре логики	Задачи	OK 01, OK 02	Практическо е занятие №10	OK 01, OK 02					
Тема 5.2. Структура,	Задачи	OK 01, OK 02							

форматы двоичных чисел и математические операции с двоичными числами						
Тема 5.3. Основные понятия алгебры логики	Задачи	OK 01, OK 02				
Раздел 6. Элементы		OK 01, OK 02				
теории						
вероятности и						
математической						
статистики Тема 6.1. Основные		OK 01 OK 02				
понятия комбинаторики, теории вероятности и математической статистики	Задачи	OK 01, OK 02	Практическо е занятие №11	OK 01, OK 02		
Раздел 7. Основные		OK 01, OK 02				
численные методы						
Тема 7.1. Численное интегрирование	Задачи	OK 01, OK 02				
Тема 7.2. Численное дифференцирование . Численное решение обыкновенных дифференциальных уравнений	Задачи	OK 01, OK 02	Практическо е занятие №12	OK 01, OK 02		
Итоговое занятие	Э				Э	ОК 01, ОК 02

3.2 Кодификатор оценочных средств

Функциональный признак оценочного средства	Код оценочного средства
(тип контрольного задания)	
Устный опрос	УО
Практическая работа № п	ПР № п
Тестирование	T
Контрольная работа № n	KP № n
Задания для самостоятельной работы	CP
- реферат;	
- доклад;	
- сообщение;	
- ЭCCE.	
Разноуровневые задачи и задания (расчётные,	P33
графические)	
Рабочая тетрадь	PT

Проект	П
Деловая игра	ДИ
Кейс-задача	K3
Зачёт	3
Дифференцированный зачёт	ДЗ
Экзамен	Э

4. Задания для оценки освоения дисциплины.

4.1 Комплект заданий для подготовки обучающихся к практическим работам

Практическая работа №1.

<u>Тема:</u> Предел функции. Производная функции. Применение производной к решению задач.

<u>Цель:</u> Научиться вычислять пределы функции в точке; находить производные функции и применять производную к решению задач

Задания по вариантам.

ВАРИАН 1

1. Найти пределы:

 $\lim_{x \to x_0} \frac{2x^2 - 7x + 6}{6 - x - x^2}, \quad \text{при} \quad \mathbf{x} = 1 \; ; \; 2 \; ; \; \infty$

2. Найти производные

2. Hauth inpossibly
$$V = 8\sqrt[5]{x} - 2x + 6\cos x^{3}$$

$$Y = (2x + 7) \cdot \sqrt{6 - 5x}$$

$$Y = Ln \frac{2x - 3x^{2}}{8 + 7x}$$

$$Y = \cos \frac{5x + x^{2}}{x^{3} + 1}$$

$$Y = (4x^{2} - \frac{3}{\sqrt{x}} + 4)^{3}$$

- 3. Тело движется по закону $S(t) = 4t^4 3t^2 2t 1$. Найти скорость и ускорение в момент времени 2 с.
- 4. Найти кинетическую энергию и силу, действующую на тело в момент времени 3 с.. Если тело массой 5 кг движется по закону $S(t) = 2t^3 + t^4 7$.
- 5. Составить уравнение касательной к графику функции $y = 2x^2 + 4x 9$ в точке x = 3

ВАРИАНТ 2

1. Найти пределы:

 $\lim_{x \to x_0} \frac{x^2 - 3x + 2}{14 - x - 3x^2}, \quad \text{при} \quad \mathbf{x} = 2 \; ; \; 1 \; ; \; \infty$

2. Найти производные

$$Y = \frac{6}{3x - 2} + 7x^{2} + 8$$

$$Y = (2x - 1) \cdot \sqrt{7x + 5}$$

$$Y = Ln \frac{5x - 1}{6 + 7x}$$

$$Y = \cos \frac{2x - 7}{8 + 3x}$$

$$Y = (x^{3} - 4\sqrt[8]{x^{3}} + 2)^{3}$$

- 3. Тело движется по закону $S(t) = 2t^4 2t^2 + t 2$. Найти скорость и ускорение в момент времени 2 с.
- 4. Найти кинетическую энергию и силу, которая действует на тело в момент времени 1с. Если тело массой 2 кг движется по закону $S(t) = 4t^3 5t^2 1$.
- 5. Составить уравнение касательной к графику функции $y = 2x^2 3x 10$ в точке x = -3

ВАРИАНТ №3

1. Найти пределы:

$$\lim_{x \to x_0} \frac{2x^2 + x + 1}{x^2 - 3x - 4}, \quad \text{при } \mathbf{x} = 2; -1; \quad \infty$$

$$V = \sqrt[3]{x^2 + 6x^7 - 5Lnx^4}$$

2 Найти производные

$$Y = (2x - 1) \cdot \sqrt{4 - 7x}$$

$$Y = Ln \frac{8x^2 - 1}{x^3 - 4x}$$

$$Y = \cos \frac{7 - 8x}{4 + x^2}$$

$$Y = (x^3 - \frac{3}{x^2} + 4)^2$$

- 3. Тело движется по закону $S(t) = 2t^4 3t^2 + t 2$. Найти скорость и ускорение в момент времени 2 с.
- 4. Найти кинетическую энергию и силу, которая действует на тело в момент времени 1с. Если тело массой 3 кг движется по закону $S(t) = 2t^3 4t^2 + 7t 1$. 5. Составить уравнение касательной к графику функции $y = 2x^2 4x + 8$ в точке x=2.

ВАРИАН № 4

1. Найти пределы:

$$\lim_{x \to x_0} \frac{3x^2 + x - 4}{4x - x^2 - 3}, \quad \text{при} \quad \mathbf{x} = 1 \; ; \; -1 \; ; \; \infty$$

2. Найти производные

2. Tradity in possibly,

$$V = \sqrt[5]{x^4} + 7x^6 + 5Lnx^7$$

$$Y = (6x + 3) \cdot \sqrt{5 + 2x}$$

$$Y = Ln \frac{8 - 3x^2}{7x + x^3}$$

$$Y = \sin \frac{8x + 3x^2 - 2}{7 - 2x}$$

$$Y = (3x^4 - \frac{5}{\sqrt[4]{x}} + 2)^5$$

- 3. Тело движется по закону $S(t) = 4t^4 + 2t^2 7t 3$. Найти скорость и ускорение в момент времени 1 с.
- 4. Найти кинетическую энергию и силу, которая действует на тело в момент времени 2с. Если тело массой 4 кг движется по закону $S(t) = 2t^3 + 5t^2 7t$.

5. Составить уравнение касательной к графику функции $y = 5x^2 - 2x + 3$ в точке x = -1.

ВАРИАН №5

1. Найти пределы:

$$\lim_{x \to x_0} \frac{4x^2 - 5x + 1}{3x - x^2 - 2}, \quad \text{при} \quad \mathbf{x} = 1; -1; \quad \infty$$

2. Найти производные

$$V = 7^{5}\sqrt{x^{4}} + \frac{7}{x} - 4\cos^{2}x$$

$$Y = (3x - 2) \cdot \sqrt{4 - 5x}$$

$$Y = Ln \frac{5x^{2} - 1}{6x + 7}$$

$$Y = \cos \frac{7x - x^{4} + 1}{7 - x^{3}}$$

$$Y = (4x^{3} - \frac{3}{\sqrt{x}} + 4)^{7}$$

- 3. Тело движется по закону $S(t) = 4t^4 3t^2 t + 2$. Найти скорость и ускорение в момент времени 2 с.
- 4. Найти кинетическую энергию и силу, которая действует на тело в момент времени 3с. Если тело массой 2 кг движется по закону $S(t) = 3t^4 + 5t^2 2t 1$.
- 5. Составить уравнение касательной к графику функции $y = 3x^2 5x + 1$ в точке x=3

$$Y = 7\sqrt[5]{x^4} + \frac{7}{x} - 4\cos^2 x$$

$$Y = (3x - 2) \cdot \sqrt{4 - 5x}$$

$$Y = Ln \frac{5x^2 - 1}{6x + 7}$$

$$Y = \cos \frac{7x - x^4 + 1}{7 - x^3}$$

$$Y = (4x^3 - \frac{3}{\sqrt{x}} + 4)^7$$

- 3. Тело движется по закону $S(t) = 4t^4 3t^2 t + 2$. Найти скорость и ускорение в момент времени 2 с.
- 4. Найти кинетическую энергию и силу, которая действует на тело в момент времени 3с. Если тело массой 2 кг движется по закону $S(t) = 3t^4 + 5t^2 2t 1$.
- 5. Составить уравнение касательной к графику функции $y = 3x^2 5x + 1$ в точке x=3

Практическая работа №2.

Тема: Дифференциал функции. Приложение дифференциала к приближённым вычислениям.

Цель: Научиться применять дифференциал для приближённых вычислений.

Задания по вариантам.

1. Вычислить приближенное значение функции в точке.

2. Найти приближенные значения.

№ варианта	Задание № 1	Задание № 2
1	$y = 2x^3 + 4x^2 - x + 10, x_0 = 2{,}003$	$\sqrt{8,94}$; $\sqrt[3]{26,72}$
	$y = 4x^2 + 3x - 2, x_0 = 1,003$	2,005 ⁴ ;1,996 ⁷
2	$y = 4x^3 + 2x - 3, x_0 = 3,001$	$\sqrt{0,84;\sqrt[4]{81,8}}$
	$y = 5x - x^2 + x^3, x_0 = 1,999$	$2,006^4; \sqrt[3]{0,997}$
3	$y = 3x^2 + 4x - 7, x_0 = 4{,}003$	$\sqrt{120}$; $\sqrt[3]{0.94}$
	$y = 4x^3 - 5x + 6, x_0 = 0,998$	1,005 ⁴ ;2,002 ¹⁰
4	$y = x^2 + x^3 - 4, x_0 = 5,001$	$\sqrt{25,001}; \sqrt[3]{27,003}$
	$y = 3x^2 - x + 1, x_0 = 0,997$	$1,0003^5;0,996^3$
5	$y = 3x^3 + 4x - 5, x = 4{,}005$	$\sqrt{0,85}$; $\sqrt[4]{81,003}$
	$y = 4x - x^3 + 1, x_0 = 0,995$	4,002 ³ ;0,995 ⁴

Практическая работа №3.

Тема: Исследование функции.

Цель работы: Отработать алгоритмы исследования функции на монотонность, экстремумы, вогнутость и построение графика функции.

Задания по вариантам:

- 1. Найти интервалы монотонности.
- 2. Найти экстремумы функции.
- 3. Найти интервалы вогнутости и точки перегиба.
- 4. Найти наибольшее и наименьшее значение функции на отрезке.
- 5. Исследовать и построить график функции.

Вариант1.

1.
$$y = -x^4 + 4x^2 - 3$$

$$3. \qquad y = 2x^3 - 3x^2 - 12x + 1$$

5.
$$y = x^3 - 3x$$

Вариант 2

$$1. \qquad y = x + \frac{1}{x}$$

$$3. \quad y = -x^3 + 3x^2 + 4$$

$$5. y = 4x^2 - x^4$$

Вариант 3

1.
$$y = \frac{4}{x} + \frac{x}{4}$$

$$3. \quad y = -6x^3 + 3x^2 + 4$$

5.
$$y = 2x^4 - x$$

$$2. \quad y = x^3 - 6x^2 + 9x - 3$$

4.
$$y = 2x^3 - 9x^2 + 12x - 5$$
 [-1;3]

2.
$$y = \frac{1}{3}x^3 + 2x^2 - 7$$

4. $y = 2x^3 + 15x^2 + 24x - 2$ [-5;0]

4.
$$y = 2x^3 + 15x^2 + 24x - 2$$
 [-5;0]

2.
$$y = \frac{1}{3}x^3 - \frac{1}{2}x^2 - 10$$

4.
$$y = 2x^3 + 9x^2 - 24x - 56$$
 [-5;2]

1.
$$y = \frac{6}{x} + \frac{x}{6}$$

$$2. \qquad y = \frac{1}{3}x^3 + x^2 - 3x - 4$$

$$3. \quad y = x^3 - 9x^2 - 24x + 12$$

4.
$$y = 2x^3 - 3x^2 - 36x + 20$$
 [1;4]

$$5. y = 3x^2 - x^3$$

Вариант 5

1.
$$y = \frac{8}{x} + \frac{x}{2}$$

$$2. y = x^4 - x^2 + 8$$

3.
$$y = \frac{3}{2}x^4 - 2x^3 - 6x^2 + 7$$

4.
$$y = 2x^3 + 3x^2 - 36x - 21$$
 [4;1]

5.
$$y = x - x^3$$

Практическая работа №4.

Тема: Определенный и неопределенный интеграл. Применение интеграла к решению задач.

Цель: Научиться находить первообразные, вычислить определенные интегралы, решать задачи с применением интегралов.

Задания к практической работе по вариантам.

Bap.1

1) Найти интегралы

a)
$$\int_{-2}^{1} (5-2X)$$
; 6) $\int_{0}^{4} 3\sqrt{X} dx$; B) $\int_{-1}^{2} (x^{2}+4x-7) dx$; Γ) $\int_{0}^{\frac{\pi}{3}} \sin dx$

$$_{\rm B})^{\int_{-1}^{2}(x^2+4x-7)dx}$$
;

$$\Gamma$$
) $\int_0^{\frac{\pi}{3}} \sin dx$

- 2) Скорость падения в пустоте тела определяется по формуле $\vartheta = 9.8t ({\it M/c}$). Какой путь пройдет тело за первые 10с падения.
- 3) Для распрямления пружины на 0,02м необходимо совершить работу 16 Дж. На какую длину можно растянуть пружину, совершив работу в 144 Дж. Bap.2
- 1) Найти интегралы

a)
$$\int_{-1}^{2} 3x^2 dx$$
; $6)^{\int_{-2\pi}^{\pi} \sin x dx}$; $b)^{\int_{-1}^{2} (1 - 3x^2)^2 dx}$; $r)^{\int_{-2}^{-1} (6x^2 + 2x - 10) dx}$

- 2) Скорость падения в пустоте тела $\vartheta = 9.8t(M/c)$. Какой путь пройдет тело между 3с. и 8с.
- 3) Вычислить работу совершенную при сжатии пружины на 0,06м, если для сжатия ёе на 0,01м нужна сила 10Н. Bap.3
- 1) Найти интегралы

a)
$$\int_0^4 (x - 3\sqrt{x}) dx$$
; 6) $\int_{-\pi}^0 \cos 3x dx$; B) $\int_4^9 \frac{dx}{\sqrt{x}}$; $\int_{-2}^3 2x dx$

- 2) Скорость движения тела определить по формуле $\vartheta = 3t^2 2t$ м/с. Какой путь пройдет тело за 5с. от начала движения.
- 3) Вычислить работу, совершенную при сжатии пружины на 0,03м, если для её сжатия на 0,02м была затрачена работа 30 Дж.

Bap.4

1) Найти интегралы

a)
$$\int_0^{\pi} 3\cos\frac{x}{2} dx$$
; 6) $\int_0^1 (2x+1)^3 dx$; b) $\int_2^3 (2x-1) dx$; Γ) $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} (2\sin x + 3\cos x) dx$;

- 2) Скорость движения тела $\vartheta = (4t \frac{6}{t^2})$ м/с. Определить путь его за третью секунду
- 3) Пружина растягивается на 0,02м под действием силы 60H. Какую работу произведет эта сила, распрямив пружину на 0,12м. Вар.5
- 1) Найти интегралы

a)
$$\int_{-1}^{\sqrt{3}} 4x^3 dx$$
; 6) $\int_{1}^{4} (\sqrt{x} + 5x) dx$; B) $\int_{0}^{1} (e^{2x} + 3x + 5) dx$; Γ $\int_{0}^{\frac{\pi}{4}} \sin(8x + 5) dx$;

- 2) Два тела начинают движение одновременно из одной точки: одно со скоростью $\theta = 3t^2$ м/с, другое со скоростью $\theta = 2t$ м/с. На каком расстояние друг от друга они будут через 10с, если они движутся по прямой в одном направлении.
- 3) При сжатии пружина 0,05м совершается работа 30 Дж. Какую работу необходимо совершить, чтобы сжать пружину на 0,08м.

Практическая работа №5.

Тема: Приближенные вычисления определенных интегралов.

Цель: Научиться находить приближенное значение определенных интегралов по формулам прямоугольников, трапеции, Симпсона.

Варианты:

1	$\int_{31}^{32} \frac{dx}{x}$	$\int\limits_{0}^{10}\sqrt{x^{3}+32}dx$	$\int_{0}^{1} \frac{dx}{x^2 + 1}$
2	$\int_{2}^{3} \frac{dx}{x}$	$\int_{-2}^{8} \sqrt{x^3 + 11} dx$	$\int_{1}^{2} \frac{dx}{x^2 + 1}$
3	$\int_{3}^{4} \frac{dx}{x}$	$\int_{-4}^{6} \sqrt{49 - x^2} dx$	$\int_{2}^{3} \frac{dx}{x^2 + 1}$
4	$\int_{4}^{5} \frac{dx}{x}$	$\int_{-1}^{9} \sqrt{x^2 + 9} dx$	$\int_{3}^{4} \frac{dx}{x^2 + 1}$
5	$\int_{5}^{6} \frac{dx}{x}$	$\int_{-2}^{8} \sqrt{x^3 + 8} dx$	$\int_{4}^{5} \frac{dx}{x^2 + 1}$

Практическая работа №6.

Тема. Приложение степенных рядов для приближенного вычисления функции и определенного интеграла.

Цель работы: рассмотреть и научиться применять степенные ряды для приближенного вычисления функции и определенного интеграла.

Задания для самостоятельного выполнения студентами

Задание 1. Вычислите значения функций с точностью до 0,0001: Проверьте полученные результаты в программе Mathcad, используя непосредственную подстановку.

a) $\sin x_1$; б) $\cos x_2$; b) e^{x_3} ; г) $(1+x_4)^{\alpha}$; д) $\ln x_5$; е) $\frac{1}{1-r}$.

						1 300)
Номер варианта	x_I	x_2	<i>X</i> ₃	χ_4	α	x_5	x_6
1	2,76°	84,25°	4,15	0,01	1,015	0,04	0,291
2	39,42°	27,31°	3,78	0,11	-2,152	0,11	-0,145
3	21,45°	68,37°	0,56	0,12	-0,598	0,12	0,258
4	15,24°	74,41°	-1,34	0,13	1,298	1,88	0,478
5	71,28°	11,15°	-1,96	0,14	-3,521	0,31	-0,148

2.Найдите первые пять членов рядов $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$.

Вариант 1.
$$a_n = \frac{n}{n^3 + 1}$$

$$b_n = \frac{(-1)^n \cdot n}{(2n-1)!}$$

Вариант 3.
$$a_n = \frac{n^2}{3n+1}$$

$$b_n = \frac{(-1)^{n+1} \cdot 3^m}{n!}$$

Вариант 5.
$$a_n = \frac{7n}{2n^2 - 1}$$

$$b_n = \frac{(-1)^{n+1} \cdot 15}{n!}$$

Вариант 2. $a_n = \frac{n}{2n^2 - 3}$

$$b_n = \frac{(-1)^{n-1} \cdot 3^m}{n^m}$$

Вариант 4 $a_n = \frac{1}{n^2 + 2}$

$$b_n = \frac{(-1)^n}{n!}$$

3.Дан числовой ряд $\sum_{n=1}^{\infty} a_n$. Найдите его частичную сумму S_4

Вариант 1.
$$\sum_{n=1}^{\infty} \frac{(-1)^n \cdot 36}{n^2}$$

Вариант 2.
$$\sum_{n=1}^{\infty} \left(\frac{2n+6}{n} \right)^2$$

Вариант 3.
$$\sum_{n=1}^{\infty} (n^2 + 1)$$

Вариант 4.
$$\sum_{n=1}^{\infty} \left(\frac{n+6}{n}\right)^2$$

Вариант 5 $\sum_{n=1}^{\infty} \frac{12}{n}$

4. Используйте необходимый признак для исследования следующих числовых рядов на сходимость

Вариант 1.
$$\sum_{n=1}^{\infty} \frac{1}{(n+1)^2}$$
 Вариант 2. $\sum_{n=1}^{\infty} \frac{n^2+1}{n^5+3n}$ Вариант 2. $\sum_{n=1}^{\infty} \frac{1}{n^5+3n}$ $\sum_{n=1}^{\infty} \frac{1}{n^{10}}$ $\sum_{n=1}^{\infty} \frac{1}{n^{10}}$ $\sum_{n=1}^{\infty} \frac{2n^2}{4n^2+n}$ $\sum_{n=1}^{\infty} 3n$ Вариант 3. $\sum_{n=1}^{\infty} \frac{1}{n^2+1}$ $\sum_{n=1}^{\infty} \frac{2n}{n^3+2n}$ $\sum_{n=1}^{\infty} \frac{2n}{n^3+2n}$ $\sum_{n=1}^{\infty} \frac{n}{n+1}$ $\sum_{n=1}^{\infty} \frac{n}{n+1}$ $\sum_{n=1}^{\infty} \frac{n}{n+1}$ Вариант 5. $\sum_{n=1}^{\infty} \frac{n}{n+1}$ $\sum_{n=1}^{\infty} \frac{n}{n+2}$ $\sum_{n=1}^{\infty} \frac{3n}{n+2}$ $\sum_{n=1}^{\infty} \frac{3n}{n+2}$ $\sum_{n=1}^{\infty} \frac{3n}{n+2}$ $\sum_{n=1}^{\infty} \frac{3n}{n+2}$ $\sum_{n=1}^{\infty} \frac{3n}{n+2}$ $\sum_{n=1}^{\infty} \frac{n}{n+2}$ $\sum_{n=1}^{\infty} \frac{3n}{n+2}$ $\sum_{n=1}^{\infty} \frac{n}{n+2}$ $\sum_{n=1}^{\infty} \frac{3n}{n+2}$ $\sum_{n=1}^{\infty} \frac{n}{n+2}$

Практическая работа №7.

Тема. Определение вероятности случайного события Математическое ожидание и дисперсия.

Цель работы: научиться определять вероятность случайного события, математическое ожидание, дисперсию и среднее квадратичное отклонение

дискретной случайной величины.

Варианты заданий для самостоятельного выполнения студентами.

- 1. Найти математическое ожидание.
- 2. Найти дисперсию дискретной случайной величины.
- 3. Найти среднее квадратичное отклонение.

Варианты

Вариант			Α	١)					E	5)		
1	X_k	0	$\frac{1}{2}$	10	3,14	-4	x_k	-2	4	6	8	10
1	$p_{\scriptscriptstyle k}$	0,1	0,4	0,1	0,3	0,1	p_k	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{4}$
2	x_k	-5	-8	1	3	4	x_k	1	-5	8	$\frac{1}{7}$	$\frac{1}{6}$
2	p_k	0,1	0,4	0,1	0,1	0,3	p_k	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{4}$
	x_k	-2	0	7	3	0,15	x_k	2	-32	10	-7	1,25
3	p_k	0,25	0,15	0,2	0,1	0,3	p_k	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{4}$
4	x_k	2	-3	5	9	$\frac{1}{7}$	x_k	2	3	5	7	11
4	$p_{\scriptscriptstyle k}$	0,05	0,05	0,1	0,5	0,3	p_k	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{2}$
5	x_k	-2	5,3	4,7	15	-4	X_k	3	-5	-7	$\frac{1}{8}$	-5
3	p_k	0,3	0,2	0,1	0,2	0,2	p_k	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{8}$

Практическая работа №8.

Тема: Определители. Действия с матрицами. Решение систем уравнений. Цель работы: Научиться вычислять определители, выполнять действия с матрицами и решать системы линейных уравнений.

Задания по вариантам.

1.Вычислить определитель

$$\Delta = \begin{vmatrix} 4 & 7 \\ 5 & 1 \end{vmatrix} \Delta = \begin{vmatrix} 1 & 8 & 3 \\ 4 & 5 & 2 \\ 3 & 1 & 8 \end{vmatrix} \Delta = \begin{vmatrix} 1 & 2 & 41 \\ 5 & 8 & 23 \\ 2 & 3 & 17 \\ 10 & 1 & 54 \end{vmatrix}$$

$$\Delta = \begin{vmatrix} 1 & 5 \\ 2 & 3 \end{vmatrix} \Delta = \begin{vmatrix} 2 & 1 & 1 \\ 3 & 8 & 2 \\ 4 & 5 & 2 \end{vmatrix} \Delta = \begin{vmatrix} 1 & 0 & 45 \\ 2 & 3 & 24 \\ 7 & 1 & 58 \\ 6 & 3 & 23 \end{vmatrix}$$

$$\Delta = \begin{vmatrix} 4 & 7 \\ 2 & 5 \end{vmatrix} \Delta = \begin{vmatrix} 8 & 7 & 1 \\ 5 & 4 & 3 \\ 2 & 5 & 1 \end{vmatrix} \Delta = \begin{vmatrix} 2 & 1 & 54 \\ 4 & 5 & 17 \\ 8 & 1 & 33 \\ 2 & 3 & 45 \end{vmatrix}$$

$$\Delta = \begin{vmatrix} 6 & 10 \\ 2 & 5 \end{vmatrix} \Delta = \begin{vmatrix} 4 & 5 & 2 \\ 1 & 3 & 7 \\ 8 & 1 & 3 \end{vmatrix} \Delta = \begin{vmatrix} 2 & 1 & 4 & 7 \\ 2 & 4 & 7 & 1 \\ 6 & 2 & 3 & 1 \\ 3 & 8 & 1 & 5 \end{vmatrix}$$

$$\Delta = \begin{vmatrix} 3 & 5 \\ 8 & 1 \end{vmatrix} \Delta = \begin{vmatrix} 2 & 1 & 3 \\ 4 & 5 & 8 \\ 7 & 6 & 5 \end{vmatrix} \Delta = \begin{vmatrix} 2 & 1 & 3 & 3 \\ 4 & 5 & 7 & 5 \\ 3 & 8 & 5 & 2 \\ 2 & 1 & 3 & 8 \end{vmatrix}$$

2.Выполнить действия с матрицами.

- 1) A+B+C
- 2) 2A-3B
- 3) 4A+2C
- 4) A*B
- 5) B*C

$$A = \begin{pmatrix} -1 & 18 & 3 \\ 4 & 5 & 2 \\ 1 & 0 & 1 \end{pmatrix} B = \begin{pmatrix} -2 & -1 & 3 \\ 4 & 5 & 1 \\ 7 & -6 & 5 \end{pmatrix} C = \begin{pmatrix} -2 & 3 & 1 \\ 2 & 1 & 5 \\ 6 & -1 & 2 \end{pmatrix}$$

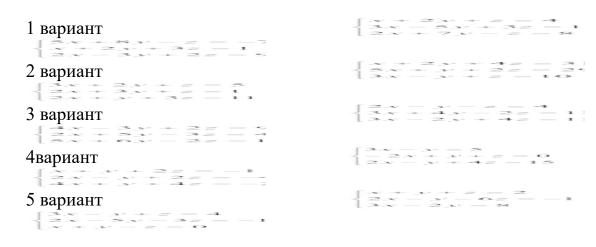
1.

$$A = \begin{pmatrix} 2 & -1 & 1 \\ 3 & 8 & 2 \\ 4 & 0 & 1 \end{pmatrix} B = \begin{pmatrix} -2 & 1 & 3 \\ 2 & 4 & 7 \\ 8 & 1 & 3 \end{pmatrix} C = \begin{pmatrix} 6 & 2 & 1 \\ 3 & 1 & -2 \\ 4 & -2 & -1 \end{pmatrix}$$

2.

$$A = \begin{pmatrix} -2 & -1 & -3 \\ 4 & -5 & 1 \\ 8 & 1 & 7 \end{pmatrix} B = \begin{pmatrix} 6 & 1 & 5 \\ 2 & -1 & 3 \\ -7 & -2 & 1 \end{pmatrix} C = \begin{pmatrix} -2 & -5 & 1 \\ 6 & 2 & 1 \\ 5 & 3 & 2 \end{pmatrix}$$

3.


$$A = \begin{pmatrix} 4 & 5 & 1 \\ -2 & -1 & 7 \\ 8 & 1 & 3 \end{pmatrix} B = \begin{pmatrix} -2 & 3 & 7 \\ -4 & -2 & 1 \\ 3 & 1 & -7 \end{pmatrix} C = \begin{pmatrix} -4 & -3 & -1 \\ 2 & 1 & 8 \\ 3 & 5 & -1 \end{pmatrix}$$

4.

$$A = \begin{pmatrix} -1 & \frac{1}{2} & 0 \\ 3 & 4 & 1 \\ -5 & 8 & \frac{1}{2} \end{pmatrix} B = \begin{pmatrix} -2 & -4 & 1 \\ 8 & 3 & 8 \\ 1 & -4 & -5 \end{pmatrix} C = \begin{pmatrix} -2 & 3 & 1 \\ 5 & 2 & 1 \\ 4 & 3 & 7 \end{pmatrix}$$

5.

3.Решить системы

4.2. Комплект заданий для обучающихся для рубежного контроля

1 Синусом острого угла прямоугольного треугольника называется
отношение гипотенузы к прилежащему катету
отношение противолежащего катета к гипотенузе
отношение противолежащего катета к гипотенузе
2 Какими свойствами обладают логарифмы?
логарифм произведения
логарифм суммы
логарифм разности
3 Если большему значению аргумента соответствует большее значение функции. Какая эта функция? □

Убывающая
Возрастающая 4 Верно ли утверждение: если прямая перпендикулярна двум прямым, лежащим в плоскости, то она перпендикулярна к данной плоскости?
^С Верно
С Неверно
5 Угловой коэффициент прямой это?
отношение синус угла наклона этой прямой к оси Ox.
отношение тангенса угла наклона этой прямой к оси Ох. 6 Вектор- это
Отрезок, не имеющий направление □
Направленный отрезок прямой 7 Верно ли утверждение: две прямые в пространстве перпендикулярны, если они образуют при пересечении прямой угол?
Верно
С Неверно
8 Коллинеарные векторы- это
Векторы, обязательно имеющие одно и то же направление и одну и ту же длину
Векторы, лежащие на параллельных прямых, либо на одной 9 Действительные числа - это
натуральные и целые числа
рациональные и иррациональные числа 10 Какой четверти числовой окружности принадлежит точка t=240 градусов п
IV 11 Что такое график функции?
Множество всех значений
Множество всех точек

12 Что называется интегрированием?
операция нахождения интеграла
операция нахождения производной 13 Верно ли утверждение: прямая перпендикулярна к плоскости, если она перпендикулярна к прямой, принадлежащей плоскости? Верно
С Неверно
14 На экзамене было 120 вопросов, Катя не выучила 6 из них. Найдите вероятность того, что ей попадется выученный вопрос?
0,95
0,45 15 Тангенсом острого угла прямоугольного треугольника называется
отношение противолежащего катета к прилежащему
отношение прилежащего катета к противолежащему 16 Найдите одну из первообразных функции $f(x) = 3 - \cos(x)$.
$3x - \sin(x)$
3x + sin(x) 17 Чему равна производная от функции 2x-1? □
2
0 18 Чему равна производная от функции sinx? □
нулю □
$\cos x$ 19 Производной функции $y = f(x)$ называется
предел отношения приращения функции к приращению аргумента
отношение приращения функции к приращению аргумента 20 Сколькими способами могут разместиться 8 человек в салоне автобуса на восьми свободных местах?

```
1024
40320
21 Решите уравнение \sin x + 1 = 0
x = -\pi/2 + \pi k
x = -\pi/2 + 2\pi k
22 Решением какого из нижеперечисленных уравнений является такой ответ
x = 2\pi k?
\cos x = 1
\sin x = 0
23 Выразить в радианах угол а=20 градусов
\pi/7
\Pi/9
24 Какая из формул соответствует нечётной функции?
f(-x) = -f(x)
f(-x) = f(x)
25(3+4i)+(5-2i)
8 - 2i
8 + 2i
26 Числа а+bi и а - bi называются
сопряженными
соответственными
27 Число і называется
мнимой единицей
латинской единицей
28 Найдите значение выражения sin(360+30)
```

36 Отрезок, соединяющий две точки сферы и проходящий через её центр
Диаметр □
Радиус 37 Перпендикуляр, опущенный из вершины конуса на плоскость основания
Высота
Радиус 38 Комбинаторика - это раздел математики, в котором изучаются различного рода соединения элементов:
сочетание
размещение
перестановка
все ответы верны 39 Площадь полной поверхности пирамиды
Sбок.+ Sосн. □
Sбок.+ 2Sосн 40Аксиома это □
Исходное положение научной теории, принимаемое без доказательств □
Теорема, требующая доказательств 41 Какое из следующих утверждений верно? □
через любые три точки проходит плоскость
через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна 42 В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орёл выпадет ровно один раз. □ 0,5 □

0,25 43 Верно ли, что скалярное произведение двух перпендикулярных векторов
равно нулю? Верно
Неверно44 Геометрический смысл производной состоит в том, что производная равна
тангенсу угла наклона касательной к графику функции к положительному направлению оси Ох
угловому коэффициенту k касательной к графику функции 45 Боковая поверхность прямой призмы равна:
произведению периметра на длину грани призмы
произведению периметра основания на высоту призмы 46 Признак параллельности плоскостей
Если две параллельные прямые одной плоскости соответственно параллельны двум параллельным прямым другой плоскости, то эти плоскости параллельны
Если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости, то эти плоскости параллельны
47 Признак перпендикулярности прямой и плоскости
Если прямая перпендикулярна двум пересекающимся прямым, лежащим в данной плоскости, то она перпендикулярна к этой плоскости
Если две параллельные прямые одной плоскости соответственно параллельны двум параллельным прямым другой плоскости, то эти плоскости параллельны
48 Тело, состоящее из двух кругов, не лежащих в одной плоскости и совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих кругов
Цилиндр □
Шар 49 D - диаметр сферы, R - радиус сферы. Выберите один правильный вариант ответа.

R=2D
D=2R
50 Комплексными числами называются числа вида
а - ві
a+bi